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TECHNICAL PAPER

DEVELOPMENT OF HOMOTOPY ALGORITHMS FOR FIXED-ORDER MIXED

H21H_ CONTROLLER SYNTHESIS

I. INTRODUCTION

Modern control theory has revolutionized control system design over the past decade. H2 and

H_ methods have gained widespread recognition and are used in controller synthesis for SISO and

MIMO problems. A significant disadvantage of modern control techniques is that the resulting com-

pensator is the same order as the generalized plant, which is often larger than the original plant due
to the inclusion of frequency-dependent weights to achieve the desired performance and robustness

characteristics. Real-time implementation of these controllers for large-order systems is prohibitive

due to the computational burden of fast throughput times.

One indirect approach to alleviating this is to reduce the order of the plant and to synthesize a

controller based on this reduced-order design plant. An alternate indirect approach is to design a

full-order controller and then to apply model reduction to the controller. In either case, indirect

methods cannot guarantee closed-loop stability and are suboptimal in performance. Direct methods

impose constraints on controller order or architecture. In an optimization based synthesis procedure,

necessary conditions are formulated for the constrained closed-loop system that ensure internal

stability. The optimal projection approach of reference 1 is an example whereby order constraints are

imposed on the controller, and the necessary conditions for minimizing a quadratic cost functional
with respect to the fixed-order controller are derived. The resulting necessary conditions consist of

two modified Riccati equations and two modified Lyapunov equations coupled by an oblique pro-

jection matrix. However, solution of the necessary conditions for realistic large order systems is a
difficult task. Reference 2 employs homotopy methods to solve the optimal projection equations.

Newton methods have also been applied. 3

Optimal projection has also been extended to LQG control with an Hoo norm over-bound. 4 This

mixed H2/H_ optimization problem seeks to minimize the H2 norm of one transfer function for perfor-

mance while satisfying a bound on the Ha norm of another transfer function for robustness. The true

mixed problem has two inputs and two outputs, indicating different classes of disturbances and per-
formance variables. Much of the research into the mixed problem considers variations of the true

problem with only one input or only one output. Reference 4 considered the case of two outputs and

one input, with both full-order and fixed-order control. The difficulty here is the size of the gap
between the H= over-bound and the true Hoo norm. 5 Reference 6 addresses the two input, two output

problem with output feedback including the fixed-order problem, but does not attempt to solve it.

Recently, reference 7 used a differential game formulation to obtain fixed-order controllers for the

true mixed problem. A conjugate gradient technique was applied to solve these resulting necessary
conditions.

The objective of this paper is to build on the results of references 4 and 7 by presenting
homotopy algorithms for solving the H2, Hoo, and true mixed H2/H= fixed-order compensator syn-

thesis problems. The paper is organized as follows. Section II presents a formulation of the problem

with the compensator in controller canonical form. The necessary conditions for the fixed-order H2

controller are developed. These results are then extended to the fixed-order Hoo and mixed H2/H_



compensator design using the differential game results of reference 7. Section III introduces homo-

topy methods and develops homotopy algorithms for solution of the H2, H_., and the mixed H21H**

problem formulations of section II. Section IV presents numerical evaluations of these homotopy

algorithms, and section V concludes the paper.

II. PROBLEM FORMULATION

The generalized plant of a standard control problem is given by:

k = Ax+Blw+B2u ,

z = CIX+D12u ,

y = C2x+D21w+D22u ,

(i)

(2)

(3)

where x • R n is the state vector, w e R nw is the disturbance vector, u e R nu is the control vector,

z e R nz is the performance vector, and y e R ny is the observation vector. It is assumed that:

• (A,B1,C 1) is stabilizable and detectable

• (A,B2,C 2) is stabilizable and detectable

• D12 has full column rank

• D21 has full row rank.

A general compensator for this system is

YCc= Acxc+Bcy , (4)

u = Ccxc , (5)

where x e R nc is the state vector of the controller, the dimension of which can be specified. Figure 1

illustrates this design framework. Closing the loop using negative feedback yields the closed-loop
system dynamics:

where

:_= )/x+/_w , (6)

z=_x , (7)

x=[ x]xC' (8)
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4-B3) 22c_]

c =[c, -D,:Cc] •

(9)

(10)

(11)
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Figure 1. Generalized plant with general compensator.

The set of all internally stabilizing compensators is defined as:

S c = { (Ac,BoCc): t_ is asymptotically stable } (12)

For an H2 problem, the objective is to minimize the H2-norm on the closed-loop transfer

function from disturbance inputs to performance outputs:

Tzw = _(sI__)-lB , (13)

where the disturbances are confined to the set of signals with bounded power and fixed spectra. This

leads to three equivalent H2 optimization problems. For impulsive inputs wi = _t), the objective is

min(J(a<,Bc,C<)=llr_ll:=(ZIIz,ll_)'i2 i=1 ..... ny}, (14)
Sc

where zi is the response to wi and ]lzill2denotes the L2 norm. For wi = ai_(t) with E{ai}= O,

E{aiaj} = _(i-j) the objective becomes:

ms_n{J(_:..<.C_)=E_O{foZ(t)'z<t)dt)}. ('S)

where z(t) is the response to an initial condition x(0), and Exo{" } denotes the expectation over a

distribution of initial conditions defined by E{_(0)} = 0, E{._(0)_(0) r} =/l/if r. If the disturbance is

modeled as white noise, the objective is:



min {J(Ac,Bc, Cc)= lira E{z(t)Tz(t)}}
Sc t")** "

It can be shown that the cost in the three formulations given above can be expressed as:

J(Ac,Bc,Cc) = tr{ QB_3T} = tr{ p_T_} ,

where

(16)

(17)

jp+pjr+_/_r = 0 , (18)

_rQ+ Q_+t_T_ = 0 . (19)

P is the controllability grammian of (_,/I) and Q is the observability grammian of (¢_, _).

In order to obtain the//2-optimal compensator, the Lagrangian is defined as:

,E(Q,L,Ac,Bc,C c) = tr{ Qt_T+(t_TQ+ Q_+cTc_)L } , (20)

where L is a symmetric matrix of multipliers. Matrix gradients are taken to determine the first-order

necessary conditions:

3£ 3£ 3£ 3£ 3£

_Q - _L - _A c - _B c - 3C c - 0 . (21)

Hence, computing an H2-optimal controller of fixed-order nc < n for the general controller structure

given in equations (4) and (5) requires the simultaneous solution of five coupled equations. This is

not only computationally expensive, but is also further complicated by the fact that the problem is

overparametrized with such a compensator.

To avoid the problem of overparametrization, a canonical form description for the controller
can be used. It was shown in reference 8 that if either a controller or observer canonical form is

imposed on the compensator structure, the number of parameters is reduced to its minimal number.
The internal structure of the compensator is prespecified by assigning a set of feedback invariant

indices vi. In controller canonical form the compensator is defined as:

.t c = e°xc+ N°Uc-N°y , (22)

u c = -Pxc , (23)

u = -Hx c , (24)

where x c • R nc and u c • R hr. P and H are free-parameter matrices, and pO and N O are fixed matrices

of zeros and ones determined by the choice of controllability indices vi as follows:

p0= block diag{P ° ..... pOy}, (25)
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ei0_

0 1...0

1

0 ...... 0

, i = 1..... ny , (26)

'iXvi

NO: block diag{[0 ... 01]Txvi} , (27)

where i=1 ..... ny. The controllability indices must satisfy the following condition:

_v i= nc, i= 1..... ny . (28)
i

Figure 2 shows the structure of the controller. Similarly, a compensator in observer canonical form

can be constructed. In this paper, only the controller canonical form is employed, which imposes the

lower bound nc >_ny on the order of the compensator.

pO] N O I
I 0 I

Figure 2. Compensator in controller cononical form.

Let

fu ] (29)-U = Uc •

The augmented system may be expressed as:

AO1
_NoC2 pO

_+

-N°D21
w+ 0]_NOD22 No u = ,_:e+Blw+/_2U , (30)

z = [ cl 0 ] x + [ D,2 0 ] _ = Ca_+_,2_, (31)

(32)

Equations (30) through (33) define a static gain output feedback problem where the compensator is

represented by a minimal number of free parameters in the design matrix, G. The augmented system

is shown in figure 3. The closed-loop system is given by:
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:t= (,,I-_2O_2)x+_lw : :ix+Bw ,

Z = (C1-D12 GC.2)7¢ = _.X •

,,oo Z

Y

(34)

(35)

Figure 3. Augmented system with compensator in controller canonical form.

Minimizing the H2-norm of Tzw = _(sl-}()-l]J utilizes the same Lagrangian as given in

equation (20), but now .E is only a function of three parameter matrices, i.e., £(Q,L,G). Thus, only

three first-order necessary conditions result:

2£

-_ = _L+L_r+BB r = 0 , (36)

_-/_ ,fT.-,
_- = A _2+ Q_+_T_. = 0 , (37)

_9.£, 2roT-n12 G-_'.'12"."--T-- --T --T= C2-D12C 1-B 2 Q)L C 2 = 0 .
OG

(38)

This demonstrates that using the controller canonical form yields simpler expressions for the neces-
sary conditions, with the additional benefit of minimizing the number of compensator parameters.

Controller canonical forms can also be used to solve the H. problem. The objective is now to

minimize the oo-norm of the transfer function from disturbance inputs w to performance outputs z

given in equation (13). In this case, the necessary conditions for an H**-optimal fixed-order com-

pensator gain G are: 7

2.£ _ (,_+7_2_TQ_._)L + Lf_+ y_2_,_TQ_,)T+_I_T= 0
_Q.,,

(39)

2£ 2irQ..+Q**_+_r_.+ y_2 Q_ljrQ. = 0
_-_= (40)

2( r2 ,2Oe2_ r2e _ 2Q.)L  . o
OG

(41)



where
.E(Q_,L,G)= tr{ Q**fJIJT+(t?iTQ**+Q**_+_ T¢+ ),-2 Q_fjTQ_)L } (42)

As in the Hz problem, three coupled equations have to be solved to obtain a fixed-order compensator

which satisfies the constraint IITzwll.. < ),.

Using this approach, fixed-order H_,-design can also be extended to fixed-order/.t-synthesis.

Since H,_ controller design is a subproblem when designing for robust performance with structured

uncertainty, the fixed-order technique introduced above has the potential to constrain the order of the

controller which is normally subject to significant increases in the/.t-synthesis procedure.

The mixed H2/H** problem can be approached in a similar fashion. In this case, the gener-

alized plant has additional inputs and outputs Wp and zp, respectively, which define the H2 perfor-

mance criterion (fig. 4). The inputs w and outputs z are used to define the H** performance criterion.

Using the controller canonical form for the compensator, the augmented system for the mixed prob-
lem is:

= _._+B1w+npwp+n2"u , (43)

zp = Cp_+DIv_ , (44)

Z -" CIX+D12_ , (45)

y = L-'2x , (46)

where

M

Bp

= -Gy, (47)

Cp=[Cp O] , (49)

W

P

Dlp =[DIp 0] (50)

A B B B
p l

C 0 0 D
P

C 0 0 D
1

C D D D
2 zp 2J

Z

P

P
2

Z

lp

Y
12

22

Figure 4. Mixed H2/H** problem.
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The other expressionsare the sameas in equations(30) through (33). Consequently, the closed-
loop systemis given by:

._ = (t_-B2af2)X+npw p +B 1w = t_J[+npWp +Bw , (51)

Zp = (Cp-DlpGC2)._ = _pX , (52)

Z = (C1-D12GC2)Y_ = _Yl . (53)

In order to formulate the performance index of the mixed problem, the Lagrangian for the H2 problem

in equation (20) is adjoined to the Lagrangian for the H** problem in equation (42) by a scalar weight
_,:

.£:tr {Q**tI, gT+(arQ_+Q_tTi+cTd+'y-2Q,.]JiI'TQ_)L+Zx_TOp+(aX+x_T+t_pB_)Lp } (54)

The weight _, on the H2-norm allows a tradeoff between (H2) performance and the H** norm. The first

order necessary conditions are:

2£

_, _ ._r r.r.T... . .'r _r.T... . e.r-,Tt,a+y-2t_t_V_.,,jL+LtA+y-2t_t_ V_.ooT+tjtj = 0 , (55)

3.c grQ.+O g+drd+ r_2Q_;jtlra,= o
_L-

(56)

_-_ T T
-_-X= /_ Lt,+Lp[t+_,G G = O , (57)

- tx+x/Ir+/ r/ r = 0 (58)
 t.p

_.,17, --T -- -- --T --T -- --T --T --T
= 2(D12D12GC2LC2-D12C1LC2-B2Q..LC2+,_ DTpDIpGC2XcT5-6

-rc2-B2L-rpxer) = o (59)

As demonstrated above, imposing a controller canonical form on the compensator structure

provides a powerful tool for the design of fixed-order controllers. Promising results have been

obtained for the H** and the mixed problem in reference 7 where a conjugate gradient method was

used in the computation. A disadvantage of this method is that convergence slows down near the

optimum. Also, an initial starting guess for the compensator gain G has to be provided that stabilizes

the closed-loop system. In this paper, a homotopy method is used to continuously deform the

solution of a simple problem formulation to the solution of the desired problem formulation.



III. HOMOTOPY METHODS

Homotopy methods offer an attractive alternative to more standard approaches of optimal
controller synthesis such as sequential and conjugate gradient methods. The basic philosophy of

homotopy methods is to deform a problem which is relatively easily solved into the problem for which
a solution is desired.

Homotopy (or continuation) methods, arising from algebraic and differential topology, embed

a given problem in a parameterized family of problems. More specifically, consider sets U and Y _ 9_n

and a mapping F : U --_ Y, where solutions of the problem

F(u) = 0 (60)

are desired with u_ U and F(u)_ Y. The homotopy function is defined by the mapping

H:Ux[O, 11 _ _" such that:

H(ul,1) = F(u) , (61)

and there exists a known (or easily calculated) solution, u o, such that:

H(u o,0) = 0 . (62)

The homotopy function is a continuously differentiable function given by:

H(u(a),ct) = 0, k/ae [0,1] (63)

Thus, the homotopy begins with a simple problem with a known solution (equation (62)) which is

deformed by continuously varying the parameter until the solution of the original problem (equation

(60)) is obtained. 1° The power of homotopy methods is that minimization is not strongly dependent

on starting solution, but depends on local, small variations in the solution. Theoretically, these

methods are globally convergent for a wide range of complex optimization problems, but in actuality,

finite wordlength computation often introduces numerical ill-conditioning resulting in difficulties with

convergence. In light of these numerical limitations, a judicious choice of the initial problem is neces-

sary for convergence and efficient computation. However, the ability to select an initial problem with
a simple solution renders homotopy methods more widely applicable than sequential- or gradient-

based methods, which have a stringent requirement for an initial stabilizing solution.

Both discrete and continuous methods are used to solve the homotopy. Discrete methods

simply partition the interval [0,1 ] to obtain a finite chain of problems:

H(u,ot n) =O, 0= _o < ctl <.'' < °tN = 1 (64)

Starting with a known solution at an, the solution for H(u,Otn+l) is computed by a local iteration

scheme. Continuous methods inw)lve integration of Davidenko's differential equation, which is

obtained by differentiating equation (63) with respect to or, yielding:

9



du
=- (65)

Given u(0) = uo, this initial value problem may be numerically integrated to obtain the solution at

ct = 1 if the solution exists and is uniquely defined.

Research remains to be done in the application of homotopy algorithms. Efficient application

of homotopy methods depends on the initial problem, the final problem, and the deformation under-

taken. Given a good initial solution, the key to convergence is the ability to accurately track the

solution curve, which is determined by the deformation undertaken. The ability to predict the solution

along the homotopy path via Davidenko's differential equation makes continuous homotopy methods

superior to discrete methods. Efficient computation of the Hessian is the primary issue for practical

implementation of continuous homotopy algorithms. In the following sections, continuous homotopy

algorithms are presented for reduced-order//2, H.., and mixed H2/H** compensator designs.

A. Homotopy Algorithm

This section describes the algorithm used for implementing the continuous homotopy. In
essence, a mixed discrete and continuous approach is employed where Davidenko's differential

equation (65) is integrated along the homotopy path, and at discrete points along the trajectory, a

Newton's correction is used for local optimization to remove integration error. Newton's method,

which has quadratic convergence properties in a neighborhood of the local minimum, allows a crude

integration procedure with large step sizes to be employed for efficiently tracking the solution curve.

This approach follows closely that of references 11 and 12 and is employed in the following algorithm.

1. Find initial solution (a = 0).

2. Advance ct.

3. Predict 0.

where

4. Check prediction error.

a.

b.

al,k = % + Aob,_.

O(a,, k) = O(¢XO) + Aoq),kO'(cXO) ,

dO (On3

ek(O, ot) = IIJo(O(al.D)ll < e

If error less than tolerance, continue.

If not, 0.5Acto. k --->Aao,_+ 1.

10



c. Increment k and repeat steps 2 to 4.

5. Correct with Newton's method to compute local minimum.

6. If ct = 1, stop. Otherwise, go to step 2.

Various approaches may be taken when selecting the deformation, but the general procedure

applied in this effort is outlined as follows:

• Synthesize a low-authority H2 (full-order) compensator

• Reduce the compensator to desired order and transform to canonical form 9

• Set ),large enough so that the H2 and H** compensators are approximately equivalent

Use homotopy to deform the initial low-authority, reduced-order H2 compensator into a

full-authority reduced-order H2 compensator (H2 homotopy)

Deform the full-authority H2 compensator into a nearly optimal H** compensator with ),

approaching its infimum (H** homotopy)

At discrete values of 2., fix ),and deform the compensator into the mixed H2/H** compen-

sator by varying ,,1.(mixed H21H_ homotopy).

This procedure was chosen because it has been observed numerically that order reduction

techniques tend to work best for low-authority LQG controllers. 1_ A canonical form is imposed on

the compensator structure to minimize the number of free parameters, which in some cases can also
lead to numerical ill-conditioning. A balancing transformation which does not affect the controller
characteristics relaxes the strict structure in the po and N o matrices in equations (25) through (27)

and improves the conditioning of the problem.

The procedure outlined above separates the compensator synthesis into distinct phases. The
initial reduced-order, full-authority compensator is synthesized using the H2 homotopy, which is

then deformed into the reduced-order H._ compensator. During the H,_ phase, the scalar H2 norm

weight 2. is fixed (as are the plant matrices) and only the H.. norm overbound ), is varied. At

discrete values, ), is fixed and _. is varied to perform the H2 norm minimization. Thus, the procedure

alternates between the H= and/-/2 norm minimization.

During the homotopy, both the predicted and corrected gains are checked to assure closed-

loop stability. After each correction step, the cost gradient is checked to verify descent. During the
H_ homotopy, the solvability of the Riccati equation using predicted or corrected gains must also be

checked. If any of these conditions are violated during correction, the correction step size is scaled

and the condition is checked again. If scaling the correction step size is ineffective, the prediction

step size is decreased and the prediction phase is repeated. This process continues until the homo-

topy is completed or until the prediction step size is decreased below a prespecified tolerance. The

following sections detail the derivations employed in the homotopy algorithm.

11



B. The H2 Case

In reference 11, a continuous homotopy algorithm is presented for H 2 compensator synthesis

when the compensator has a general architecture, which requires the solution of the five coupled
equations given by equation (21). The following development parallels that of reference 11 except in

this formulation, a controller canonical form is employed for the compensator dynamics which results

in the three necessary conditions (equations (36) through (38)).

Consider equations (34) and (35). The necessary conditions for an H2 optimal compensator

are given by equations (36) through (38). Define 0 to he a vector comprised of the free compensator
parameters

0 = vec(G) , (66)

where G is the output feedback gain matrix defined in equation (33). The gradient of the cost is:

f(O) - 20 - vec - 0 , (67)

where O.EIOG is given by equation (38).

The homotopy function is defined as

a.c(o,a)
H(O,ot)- i)O - vect )=0 . (68)

Note that £ is now a function of the homotopy parameter a since the system matrices are now func-

tions of tz. The gradient of the homotopy function is

V[Hr(O,a)] = [ H o H_ ] (69)

1. Computation of Hessian. The hessian of the cost, He, is given by:

Ho=vec( _ ), j=I,N, (70)

where N is the number of free parameters. Using equation (38),

_H(e,a)
[2(,_T2_12G-- --T -- --T _.2T] (71)- C2-DI2C1-B2Q)L ,

20 i 201

2(Dr12_12G(j,_:2__Q(j,)Ler2+2(DrI2_12G- -r - -r O-z= C2-D12C1-B2Q) L(j C2 , (72)

where

(,)(j) _2(*)
20 i (73)

12



For Oj = gik,

G (j-)- aG
aOj -Eik ' (74)

which is a matrix of zeros except for a one in the ik element. From equations (36) and (37), deriva-

tives of L and Q are obtained by solving the Lyapunov equations:

XL(J) +LO3,_T +[_tJ)L+L_U)T +(_T)(J)] = 0 ,

_T QU)+Qq)_+[/_(j3TQ+Q_(j)+(t_T_)U) ] = 0 ,

where from equations (34) and (35),

/W-): ,

= o,

((ff_)(:_ -r y)r-r- - -r (j-)r-r-=(C2 G( DI2D1EGCE)+( C2G D12D12GC2) T

.

parameter, a, is:

where

and

(75)

(76)

(77)

(78)

_(E'IT_,2 G_J-)E'2)-(C T _,2G°_ E_2)T. (79)

Computation ofH a. The derivative of the homotopy function with respect to the homotopy

(aH (O,a)']

na= vec L -_-_ ), (80)

--T-- -- --T-- --T L-_H(O, o0 _ o____[2(DI2DI2GC2_D]2CI_B2Q ) C2T] , (81)
Oct oa

-- T-- - --T--12G_2+_T2_)I2G_2_b T- --T-- -- r= 2[(I)12Dt2GC2+DI2D 12C1-DI2C]-B2Q

__roQ)Le_+(_rl2_12Ge2_-[jT @ --r . --T - r. I-B2 Q)(L C 2 +L C 2 )] , (82)

3(*)
(_) =--. (83)

Oa

The derivative expressions (equations (80) through (82)) depend on the deformation under-

taken in the specified problem, i.e., the initial and final problem. In general, suppose that the defor-

mation of the matrix/_ is prescibed to be:

13



_( ct) = ,_o( a)+ ot( _l( ot)-._o( Ot) ) , (84)

where the 0 and f subscripts indicate the initial and final system matrices, respectively. It follows
that

/I = (85)

The derivative of other plant matrices are determined accordingly. The derivatives of L and Q with

respect to ot are obtained from equations (36) and (37) by solving the Lyapunov equations:

0 = ?tL +L_r+(f(L+Lf_r+[JI}r+_]_ T) , (86)

o =  ir ofl+( r a i+dr(2+ r , (87)

where from equations (34) and (35)

= _-B2GCa-B2G_2 , (88)

/}=_I , (89)

= _I-bl2GC2-D12G_2 . (90)

By employing canonical compensator formulations of equations (30) through (33), the
expressions for the derivatives of the augmented system matrices reduce to:

af-a 0 0 q

= -N O(C2,y -C2,o) 0 J ' (91 )

BI=
B l.f-B 1,0

-N°(D2kf-D21,o)
(92)

..2-"

B2= (93)

".=/_

C 1 = [ Cl,f-C1, 0 0 ] , (94)

C2 =[0 0] , (95)

DI2 = [ DI2[-DI2,0 0 ] . (96)

Thus, the use of canonical forms not only simplifies the necessary conditions by grouping all the free

compensator parameters into one feedback gain matrix, but also simplifies the derivative expres-

sions. The presence of the zero subblocks significantly enhances the computational efficiency of this
approach.

14



When implementing the procedure described at the beginning of this section, the above

equations may be further specialized. In this procedure, the initial and final plant matrices are the
same, and the homotopy is performed only on the measurement and process noise intensities, D12

and D21. Hence, _, B2, C1, and _2 are identically zero.

C. The Ha Case

A continuous homotopy algorithm has also been developed to solve the fixed-order Hot con-

trol problem. The development for the Ho, homotopy algorithm is identical to that of the previous sec-

tion for the H2 homotopy algorithm with the exception of additional terms in the necessary conditions

(equations (39) through (41)) resulting from the 7 weighted disturbance term in the cost function

(equation (42)). Only the portions that differ from the previous section will be presented here.

As with the H2 case, when implementing the procedure described at the beginning of this

section, the previous equations may be further specialized for the Ha case. In this procedure, the Ha

homotopy begins with a full-authority H2 compensator (obtained by the H2 homotopy) which is then

deformed into a full-authority H_ compensator by decreasing 7. Note that for large values of 7, the

H_ necessary conditions are equivalent to the H2 case. The initial and final plant matrices and

weights are identical, and the homotopy is performed on 7 only, resulting in considerable simplifi-
cations in the computation of Ha. The value of 7 is linearly varied from an initial high value toward a

lower bound (determined from a full-order design) according to:

_'= _'m a x-- 0[( _m a x-- _'mi n). (97)

Thus, the homotopy function defined by equations (68) and (41) is implicitly a function of a.

1. Computation of Hessian. The hessian for the Ha homotopy is identical to the hessian for

the H2 case, except that the observability grammian, Q, is replaced by Q_, which is the solution of

equation (39). The hessian is given by:

_HC0,a) - (98)

--T -- (j)-- --T (j3 L--T --T-- -- --T -- --T (j)--T= 2(D12DI2 G C2-B2Q_ ) C2+2(D12D12GC2-D12C1-B2Q_) L C2 (99)

To obtain expressions for L _j) and Q_), differentiate equations (39) and (40) to obtain:

0 = (A+),-2_r Q__)L(Y)+Ltj_ (_,+ y-2/_/]TQ.oo )T+ [ (,_ _3+ y-2_TQ_'))L

+L(,_(j)+ T-2/]/_TQ_))T] , (100)

-2 T T (j) (j) -2 T (j)T (./3 T (j)0 = (._+y /_/_ Q_) Q_ +Q_ (,_+y /_/_ Q.o,)+(_ Q__+Q_ +(_. _.) ) , (101)

where At J3 and (_T_.)/j) are given by equations (77) and (79), respectively.
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2. Computation of Ha. The derivative of the homotopy function with respect to the homotopy

parameter, a, is given by equations (80) and (81) where Q is replaced by Q**, and equation (82)
reduces to:

OH(O,a) --r - - --r - -r -r -r -r
= 2[(D 12D 12G C2-D 12C 1-B2 Q**)L C 2-B 2 _.**LC 2 ] .

3a
(102)

L and Q,., are obtained by differentiating equations (39) and (40) and are given by:

0 = (,_+y-2B/_TQ**)L +L (J_+y-2_jI_TQ**)T+(FL+LFT) (103)

0 = (t?i+y-2[_T_,)rO..o+O._(g+y-2i_T_2,o)-(2y-3 f_TQ_,) , (104)

where

F = -2) ,-3 f_/_TQ**+)-2/_/_T0.}, * . (105)

The derivative of ),with respect to a is obtained from equation (97):

= --(),max--),mi.) • (106)

Note that a general homotopic deformation of the plant matrices and weights is allowable by intro-

ducing the variation of the plant matrices with respect to the homotopy. The two-step procedure

presented here can, in principle, be reduced to a one-step homotopy while simultaneously deforming
the system matrices (the H2 case) and ), (the H** case). However, the minimum achievable value of

y when designing a reduced-order H** compensator is usually not known a priori, whereas the

system matrices must be fully deformed (i.e., a must attain the value of 1) to obtain the desired

system representation. Thus, the two-step procedure described previously was used in computing

the fixed-order H** compensators. For the H.. homotopy, only the overbound ), is deformed, thereby

greatly simplifying the required computation.

D. The Mixed H21H** Case

1. Computation of Hessian. A homotopy algorithm that solves the necessary conditions for
the mixed H21H** case equations (55) through (59) is obtained in a straightforward extension of the

H2 and H** homotopy algorithms. The hessian for the mixed case is given by:

_H(O, ot) _ -- r -- -- -- r - -- r -- r
-- DlpC p-B2Lp)X c2T]}, (107)

_Oj _Oj '{2[(DI2D12GC2-DI2C1-B2Q_)LC2+(/_DTI_IPGr2-/_-T--T

-- 2 --T-- (j)-- --T (j) _T+(DT2_12 G- --T-- --T (')--T --T --- [(D12D12G C2-B2Q** )L C2-D12CI-B2Q**)L g C2+(ZDlpDlpG(J)c2

--T (J3 --T _T _IpG__,2_/_lpU --T- --T ,)--TDIpCp--B2Lp)X (j C 2 ] (108)-B2L p )X C 2 +(,1,
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Expressionsfor Lp0) and X q), obtained by differentiating equations (57) and (58); are given by:

0 = ,2irLOp3+LOp3]_+[d(O)%+Lpt_(*3+_(_Tp_t,)O)] , (109)

0 = 7_X(t3+XO3_T+[dfO)X+X_O)T+(IJp /_pr)O)l , (1 10)

while L 0_, Q_), and/_3are the same as the H.. case, equations (100), (101), and (77), respectively.

From equation (52),

(dT_p)(J) = (__lpGO3_2)T(_p_DIpGC2)+(Cp-DlpG-C2)T(-DlpG03C2) . (111)

2. Computation of Ha. As with the computation of the hessian, the derivative of the

homotopy function with respect to a is given by:

_,,_o,,____{_G_,_-<-o-_-,_c_-_-_Q_,_e>a __ 1_e_-__l_e_-__x e_]},_,,_
3a 3a

Expressions for Lp

2l(blr2D -r- -r- -r -r+-r- G-= 12GC2+DI2DI2GC2-DI2CI-B20.**)LC2 (D12D12 C2

__IT2 _ --T ,--T "--T-- -- --T-- --T --T1-B 2 Q**)LC2 +(_ D lpD lpGC2-_, D lpCp-B2 Lp)XC 2 ] (113)

and X are obtained by differentiating equations (57) and (58) to obtain

0 = ](TLp+LpT_+(_TLp+Lt, A+_ T _p+A _T_p+j_ _T_p) , (114)

0 = aX+Xa T+(_tX+ x_T+_p_Tp +_p_Tp) , (115)

and

= _,max-_,min . (116)

Note that the procedure described in section III.A, where the H_, and H2 homotopies are

performed distinctly, simplifies the computations significantly in that the plant matrices remain fixed

and only yor _. are varied at one time.

IV. DESIGN EXAMPLE

To demonstrate the homotopy algorithm applied to optimal controller synthesis, the four-disk

example originally described in reference 13 and more recently by numerous others (see reference
11) will be used. The four-disk model used in the example problem was derived from a laboratory

experiment and represents an apparatus developed fl)r testing of pointing control systems for flexible

space structures with noncolocated sensors and actuators. As illustrated in figure 5, four disks are
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MI, 0l M2, 02 M3, 03 M4, 04

l 2 3 4

Figure 5. Four-disk system.

rigidlyattached to a flexibleaxialshaftwith controltorque applied to selecteddisks and the angular

displacement of selected disks measured. The equations of motion may be written as:

11 0"1+K1(01-02) = 0 , (117)

12 02+K2(02-03 )-K l (01-02) = 0 , (118)

13 b'a+g3(Oa-O4)-g2(02-O 3) = 0 , (119)

I 4 04-K3 (03-04) = 0 , (120)

or

M//+/_q =Bu , (121)

where the generalized displacements are the angular displacements of the disks, qT = [01 02 03 04],

and the input vector consists of the moments applied to each disk, u r = [M I M 2 M 3 M4]. Defining the

state vector as x r = [qr or] results in the state space formulation:

.:c = Ax + Bu , (122)

where

0  [01,_-1/(. /_-1_ "

For simplicity, the stiffness and inertia terms are set to unity ((GJ/L)i = K i = I i = 1,

case, the mass matrix is a 4 by 4 identity matrix and the stiffness matrix is:

R=K'K =K I i-1 2 -1
0-1 2-
0 0-1

(123)

i=1:4). In this

(124)
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Theplant is modeledwith parametricuncertaintycorrespondingto uncertainty in the stiffnessof each
shaft. Let uncertainty in the shaftstiffnessbemodeledas:

K = Ko+AK =_ R = (Ko+AK)/_" • (125)

Hence, the A matrix becomes:

0] , (126)

= ao+aa . (127)

A block diagram representation of the plant with uncertain stiffness is shown in figure 6.

Figure 6. Plant with uncertain stiffness.

A. The H2 Case

To demonstrate the homotopy algorithm applied to H2 controller synthesis, the same four-

disk model used in reference 11 will be used here. These results provide a direct comparison

between the homotopy algorithm of reference 11 (HAO) and the algorithm presented in section III

(H2HOM). The main distinction between the two homotopy algorithms for the H2 case is the

compensator architecture. HAO employs a general architecture that may be restricted to various

parameterizations including the controllability canonical form (the controller canonical form is used in
H2HOM). When the controllability canonical form is implemented in HAO, as in this example, the

compensator is still represented in a general architecture, resulting in the evaluation of five

necessary conditions (equation (21)). The HAO code has been highly optimized for efficient

computation with the result that superfluous computations are not evaluated. The homotopy

algorithm of this paper, H2HOM, is patterned after the general approach of HAO and utilizes some
of the more efficient computational aspects of the HAO code.

The control design philosophy for this example is to scale the nominal control weight and the

nominal sensor noise intensity by the parameter q. As q is reduced, the control authority is
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increased.For comparison with the result published in reference 11, a full-order (eighth-order)
compensatorwas synthesized.Although the results can bedirectly obtainedfrom the LQG Riccati
equations, the full-order compensatorwas chosen to tax the H2HOM algorithm, which must
optimize over a greaternumberof parameterswith increasingcompensatororder.

Table 1 showsa comparisonof the results from the H2HOM and HAO algorithms for the full-

order compensator along with results from the H2HOM algorithm for sixth- and second-order

compensators. All pertinent parameters as well as logic for step size scaling and the computation of

the prediction and correction errors are identical in both algorithms, which are implemented in
MATLAB TM on a 486 66MHz computer. Whereas the HAO code required a minimum step size of

1.907e-7, the H2HOM code was much better conditioned and required a minimum step size of 0.025.

As a consequence of the smaller step sizes with HAO, 2,504 hessian computations were required as

opposed to only 63 hessian computations with H2HOM. The HAO code has been tuned extensively
for efficient computation as is reflected in the small number of flops required. In spite of the

significantly smaller number of flops required for HAO, the H2HOM code required significantly less

clock time for convergence to the same final compensator. (The results generated by the author using

the HAO code differ slightly from those reported in reference 11, although the parameters in the

HAO algorithm are the same. It is likely that the published results were generated with an earlier
version of the HAO code. The qualitative trends remain the same.)

Table 1. Comparison of H2HOM and HAO algorithms.

Algorithm HAO H2HOM H2HOM

8 8 6

2,504 63 60

Compensator Order

Number Hessian Comp.

Minimum Step Size

Maximum Step Size
Max. Number Correction Iterations

1.907e-7

0.1

0.025

0.1

0.05

0.1

H2HOM

2

3O

0.1

0.2

9 7 8 5

Mflops 287 936 455 37

Time (s) 5,104 883 488 73

In reference 11, the controllability canonical form is assessed as poorly conditioned because

of the small minimum step size. However, table 1 indicates that the static gain formulation in

H2HOM yields a substantial improvement in conditioning along the homotopy path over the HAO

implementation of the canonical compensator. However, this may not be the case in general due to

the tendency toward ill-conditioning characteristic of canonical forms. An even more significant

benefit of this formulation is the straightforward extension to the Hoo and mixed H2/H_ problems.

B. The Mixed H21H._ Case

The homotopy algorithm was also used to synthesize reduced-order mixed H2/H**

compensators for the four-disk problem. The problem was formulated in terms of a robustness

design and a performance design. Similar to the methodology of Luke, 14 the H** portion uses

weighted sensitivity for the tracking problem and minimizes the control energy due to stochastic

disturbances using the H2 norm. The block diagram for this problem is shown in figure 7. The output

is angular position of disk 3, and the control input is torque applied to disk 3.
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Figure 7. Closed-loop four-disk block diagram.

First, a nominal performance design was performed by varying the sensitivity weight, We, to

obtain desirable step responses. Then as described in section IV, the additive uncertainty

corresponding to uncertain shaft stiffness was included. This uncertainty representation is somewhat

conservative due to the complex uncertainty representation, but still serves to allow robustness to

uncertainty in the modes, which in turn adds to the stability margins. The uncertainty weights were

then scaled to allow the infinity norm of the closed-loop system to be less than 1. For the H**

minimization problem, the input vector w consisted of four inputs corresponding to the uncertainty

model (fig. 6); measurement noise, dml; disk 3 position command, 03,corn; and actuator noise, da. The

output vector z consisted of four outputs corresponding to the uncertainty model; control energy, Zu;

and weighted error, Ze. For the H2 minimization problem, the input vector wp consisted of a

stochastic disturbance torque, d, and measurement noise, din2. The output p was the control energy

Z,. The sensitivity weight was given by

We- 5
1 s+l

0.05

A full-order compensator was synthesized for the H., portion using the standard 2-Riccati

(DGKF) solution 15 for comparison with the full- and reduced-order compensators synthesized by

the homotopy algorithm. The homotopy algorithm was able to reproduce the 2-Riccati solution with
the exception that the code was stopped prior to obtaining the minimum gamma since convergence

slows considerably in the neighborhood of optimum. For the sixth-order H_, compensator, the

homotopy was terminated at _, = 1.08. Figure 8 shows the maximum singular value plots of the

closed loop for each H,_ compensator. It should be emphasized that using schur-balanced model

reduction and optimal hankel norm model reduction on the full-order H,_ compensator, it was not

possible to obtain a stabilizing reduced-order compensator of any order. Thus, the homotopy

algorithm was able to synthesize fixed-order H_ controllers where standard model reduction

techniques failed.

H_ compensators are generated as a special case of the mixed H21H** homotopy with the H2

norm weight _, set to zero. Then for fixed )', a homotopy is performed on _, which is increased and
the minimum H2 norm is obtained. Simultaneously, the H_, norm increases and the actual infinity

norm approaches the overbound. This is the key benefit of the mixed H2/H** formulation: the
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Figure 8. Singular values for H** compensators.

conservatism of the H** design is reduced by reducing the gap between the overbound 7"and the

actual H= norm, while the performance increases by minimizing the H2 norm.

The improvement in performance as indicated by the lower H2 norm is shown in figure 9,

where the minimum/-/2 norm is plotted versus the H** norm as the overbound _yis decreased. For the

DGKF full-order solution, note that the largest H** norm attainable is 1.7, which limits the attainable

/-/2 norm to 1.088. However, using the mixed H21H** formulation, the homotopy algorithm generates a

full-order compensator for a wider range of H** norms over which smaller/-/2 norms are attainable for

a given yoverbound. In this case, the largest H** norm was 3.795 with an H2 norm of 0.3317, which

is a 70-percent reduction of the Ho, solution. Similarly with the sixth-order mixed H21H**

compensator, the minimum/-/2 norm attained was 0.52 with an H** norm of 4.93. Thus, the presence

of the gap between the overbound and the actual H** norm limits the performance range attainable

with the H.. solution, but is removed when the mixed H21H** formulation is employed.
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Figure 9. H** versus H2 norm trades.
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V. CONCLUSIONS

A novel homotopy algorithm is developed to synthesize fixed-order H 2 and H** compensators

employing a controller canonical form, and a representative flexible structure is used to demonstrate
the numerical results. These results indicate that the static gain optimization formulation may be a

more efficient means of synthesizing dynamic compensators than employing a general compensator
architecture. An even more significant benefit of this approach is the straightforward extension to the

fixed-order H** and mixed H2/H** control problems. The synthesized reduced-order compensators

perform well when compared to full-order controllers, which is highlighted by the fact that standard
controller order reduction techniques do not yield a stabilizing compensator. The fixed-order mixed

H2/H** formulation is shown to offer improved performance over standard H** compensators by

minimizing the H2 norm while removing (or reducing) the gap between the actual H** norm and the

gamma overbound.
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